ÌâÄ¿ÄÚÈÝ
20£®| A£® | Pµã±ä»¯Ê±£¬ËıßÐÎEFGHÃæ»ý±£³Ö²»±ä | |
| B£® | Pµã±ä»¯Ê±£¬Áù±ßÐÎDEFBGHÃæ»ýÓÐ×î´óÖµ12$\sqrt{2}$ | |
| C£® | µãPλÓÚÕý·½ÐÎABCDµÄÖÐÐÄʱ£¬DE=2 | |
| D£® | Pµã±ä»¯Ê±£¬Áù±ßÐÎDEFBGHÖܳ¤±£³Ö²»±ä |
·ÖÎö ÀûÓÃÅųý·¨Ö¤Ã÷A¡¢C¡¢DÕýÈ·¼´¿ÉÅжϣ®
½â´ð ½â£ºA¡¢ÕýÈ·£®Pµã±ä»¯Ê±£¬ËıßÐÎEFGHÃæ»ý±£³Ö²»±ä£®
ÀíÓÉ£º
SËıßÐÎEFGH=S¡÷PEH+S¡÷PEF+S¡÷PFG+S¡÷PHG
=$\frac{1}{2}$S¾ØÐÎDEPH+$\frac{1}{2}$S¾ØÐÎAFPE+$\frac{1}{2}$S¾ØÐÎBFPG+$\frac{1}{2}$S¾ØÐÎPGCH
=$\frac{1}{2}$SÕý·½ÐÎABCD£®
C¡¢ÕýÈ·£®µãPλÓÚÕý·½ÐÎABCDµÄÖÐÐÄʱ£¬DE=2£®
D¡¢ÕýÈ·£®ÉèAP=x£¬ÔòPC=4$\sqrt{2}$-x£¬
ÔòÁù±ßÐÎDEFBGHÖܳ¤=x+4$\sqrt{2}$-x+2•£¨4-$\frac{\sqrt{2}}{2}$x£©+2•$\frac{\sqrt{2}}{2}$x=8+4$\sqrt{2}$=¶¨Öµ£®
¹ÊÑ¡ÏîB´íÎó£¬
¹ÊÑ¡B£®
µãÆÀ ±¾Ì⿼²éÕý·½ÐεÄÐÔÖÊ¡¢Æ½ÐÐÏßµÄÐÔÖÊ¡¢¾ØÐεÄÐÔÖÊ¡¢ËıßÐεÄÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÓÃÅųý·¨½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¡ÔñÌâÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®ÒÑÖªÏÂÁи÷ʽ£º¢Ù2x-3y¢Ú$\frac{1}{x}$+y=2¢Ûxy+y=-2¢Üx+y=z-2¢Ý$\frac{x+1}{2}$=1-$\frac{y}{3}$¢Þx=y£®ÆäÖжþÔªÒ»´Î·½³ÌµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 5 | B£® | 4 | C£® | 3 | D£® | 2 |
8£®ÒÑÖªÒ»¸öÕýÊýµÄÁ½¸öƽ·½¸ù·Ö±ðΪ2a-5ºÍ1-a£¬ÔòÕâ¸öÕýÊýΪ£¨¡¡¡¡£©
| A£® | 3 | B£® | 4 | C£® | 9 | D£® | 16 |
5£®ÓÉÓÚ΢µç×Ó¼¼ÊõµÄ²»¶Ï½ø²½£¬¿ÉÒÔÔÚ300ƽ·½ºÁÃ×µÄоƬÉϼ¯³É6ÒÚ¸öÔª¼þ£¬Æ½¾ùÿ¸öÔª¼þÔ¼Õ¼£¨¡¡¡¡£©
| A£® | 5¡Á10-7ºÁÃ×2 | B£® | 5¡Á10-8ºÁÃ×2 | C£® | 2¡Á106ºÁÃ×2 | D£® | 2¡Á107ºÁÃ×2 |
12£®
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãOΪԲÐĵÄÔ²¹ýµãA£¨2£¬0£©£¬BµãΪ¡ÑOÉÏÈÎÒâÒ»µã£¬P£¨5£¬0£©£¬Á¬½ÓBP£¬½«Ïß¶ÎBPÈÆBµãÄæÊ±ÕëÐýת90¡ãÖÁÏß¶ÎBC£¬µ±Bµã´ÓAµã³ö·¢£¬ÈÆÔ²ÐýתһÖܵĹý³ÌÖУ¬CµãÔ˶¯Â·¾¶³¤Îª£¨¡¡¡¡£©
| A£® | 2$\sqrt{2}$¦Ð | B£® | 4¦Ð | C£® | 4$\sqrt{2}$¦Ð | D£® | 6¦Ð |
10£®
Èçͼ£¬°Ñ¡÷ABCÖ½Æ¬ÑØDEÕÛµþ£¬Ê¹µãAÂäÔÚËıßÐÎBCDEµÄÄÚ²¿£¬Ôò¡ÏAÓë¡Ï1¡¢¡Ï2µÄ¹ØÏµÎª£¨¡¡¡¡£©
| A£® | ¡ÏA=¡Ï1+¡Ï2 | B£® | 3¡ÏA=2£¨¡Ï1+¡Ï2£© | C£® | 3¡ÏA=2¡Ï1+¡Ï2 | D£® | 2¡ÏA=¡Ï1+¡Ï2 |