题目内容

19.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于(  )
A.30°B.45°C.60°D.75°

分析 根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD=∠ABC-∠BCD计算即可得解.

解答 解:∵AB=AC,∠A=30°,
∴∠ACB=∠ABC=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$(180°-30°)=75°,
∵以C为圆心,BC的长为半径圆弧,交AC于点D,
∴BC=CD,
∴∠BCD=180°-2∠ACB=180°-2×75°=30°,
∴∠ACD=∠ABC-∠BCD=75°-30°=45°.
故选:B.

点评 本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网