题目内容

16.已知a=$\frac{1}{{3-2\sqrt{2}}}$,b=$\frac{1}{{3+2\sqrt{2}}}$.求:
(1)a2b-ab2的值;
(2)a3-5a2-6a-b+2015的值.

分析 先将a和b进行化简,然后代入各式中进行求解即可.

解答 解:(1)∵a=$\frac{1}{3-2\sqrt{2}}$=3+2$\sqrt{2}$,
b=$\frac{1}{3+2\sqrt{2}}$=3-2$\sqrt{2}$,
∴a2b-ab2
=ab(a-b)
=(3+2$\sqrt{2}$)(3-2$\sqrt{2}$)(3+2$\sqrt{2}$-3+2$\sqrt{2}$)
=1×4$\sqrt{2}$
=4$\sqrt{2}$.
(2)a3-5a2-6a-b+2015
=a(a2-5a-6)-b+2015
=(3+2$\sqrt{2}$)(9+8+12$\sqrt{2}$-15-10$\sqrt{2}$-6)-(3-2$\sqrt{2}$)+2015
=(3+2$\sqrt{2}$)(2$\sqrt{2}$-4)-(3-2$\sqrt{2}$)+2015
=6$\sqrt{2}$-12+8-8$\sqrt{2}$-3+2$\sqrt{2}$+2015
=2008.

点评 本题考查了二次根式的化简求值,解答本题的关键在于将a和b进行化简,然后代入各式中进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网