题目内容

如图,已知点D、G、E、F分别是三角形ABC的边AB、AC、BC上的点,CD⊥AB于点D,∠B=∠ADE,∠EDC=∠GFB.
求证:FG⊥AB.
考点:平行线的判定与性质
专题:证明题
分析:根据∠B=∠ADE得出∠EDC=∠DCF,再根据∠EDC=∠GFB,得出GF∥CD,最后根据CD⊥AB,即可证出FG⊥AB.
解答:证明:∵∠B=∠ADE,
∴DE∥BC,
∴∠EDC=∠DCF,
∵∠EDC=∠GFB,
∴∠DCF=∠GFB,
∴GF∥CD,
∵CD⊥AB,
∴∠CDG=∠FGB=90°,
∴FG⊥AB.
点评:本题考查了平行线性质和判定,主要考查了学生的推理能力,解答此题的关键是注意平行线的性质和判定定理的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网