ÌâÄ¿ÄÚÈÝ
3£®Ð¡Ã÷ÔÚѧϰ¶þ´Î¸ùʽºó£¬·¢ÏÖһЩº¬¸ùºÅµÄʽ×Ó¿ÉÒÔд³ÉÁíÒ»¸öʽ×ӵį½·½£¬È磺3+2$\sqrt{2}$=£¨1+$\sqrt{2}$£©2£¬ÉÆÓÚ˼¿¼µÄСÃ÷½øÐÐÁËÒÔÏÂ̽Ë÷£ºÉèa+b$\sqrt{2}$=£¨m+n$\sqrt{2}$£©2£¨ÆäÖÐa¡¢b¡¢m¡¢n¾ùΪÕûÊý£©£¬ÔòÓÐa+b$\sqrt{2}$=m2+2n2+2mn$\sqrt{2}$£¬¡àa=m2+2n2£¬b=2mn£¬ÕâÑùСÃ÷¾ÍÕÒµ½ÁËÒ»ÖְѲ¿·Öa+b$\sqrt{2}$µÄʽ×Ó»¯ÎªÆ½·½Ê½µÄ·½·¨£®
ÇëÎÒ·ÂÕÕСÃ÷µÄ·½·¨Ì½Ë÷²¢½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©µ±a¡¢b¡¢m¡¢n¾ùΪÕýÕûÊýʱ£¬Èôa+b$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬Óú¬m¡¢nµÄʽ×Ó·Ö±ð±íʾa¡¢b£¬µÃa=m2+3n2£¬b=2mn£®
£¨2£©Èôa+4$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬ÇÒa¡¢m¡¢n¾ùΪÕýÕûÊý£¬ÇóaµÄÖµ£®
·ÖÎö £¨1£©Ö±½ÓÀûÓÃÍêȫƽ·½¹«Ê½½«Ôʽ±äÐνø¶øµÃ³ö´ð°¸£»
£¨2£©Ö±½ÓÀûÓÃÍêȫƽ·½¹«Ê½½«Ôʽ±äÐεóöm£¬nµÄÖµ£¬½ø¶øµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©¡ßa+b$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬
¡àa+b$\sqrt{3}$=m2+3n2+2$\sqrt{3}$mn£¬
¡àa=m2+3n2£¬b=2mn£»
¹Ê´ð°¸Îª£ºm2+3n2£¬2mn£»
£¨2£©ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{a={m}^{2}+3{n}^{2}}\\{4=2mn}\end{array}\right.$£¬
¡ß4=2mn£¬ÇÒm¡¢nΪÕýÕûÊý£¬
¡àm=2£¬n=1»òm=1£¬n=2£¬
¡àa=22+3¡Á12=7»òa=12+3¡Á22=13£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËËãÒÔ¼°Íêȫƽ·½¹«Ê½£¬ÕýÈ·Ó¦ÓÃÍêȫƽ·½¹«Ê½ÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿