题目内容
19.| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
分析 由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后解答即可.
解答 解:∵△ADE与△ADC关于AD对称,
∴△ADE≌△ADC,
∴DE=DC,∠AED=∠C=90°,
∴∠BED=90°.
∵∠B=30°,
∴BD=2DE.
∵DC=1,
∴BD=2.
故选:B
点评 本题考查了轴对称的性质的运用,直角三角形的性质的运用,解答时根据轴对称的性质求解是关键.
练习册系列答案
相关题目
9.通常情况下,若y是关于x的函数,则y与x的函数关系式可记作y=f(x).如y=$\frac{1}{2}$x+3记作f(x)=$\frac{1}{2}$x+3,当x=2时,f(2)=$\frac{1}{2}$×2+3=4.下列四个函数中,满足f(a+b)=f(a)+f(b)的函数是( )
| A. | y=$\frac{\sqrt{3}}{x}$ | B. | y=-2x-6 | C. | y=3x | D. | y=$\frac{1}{2}{x}^{2}+3x+4$ |
4.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=$\frac{3x+1}{x}$并作了三个推测:
(1)当x>0时,y的值随着x的增大越来越小;
(2)y的值有可能等于3;
(3)当x>0时,y的值随着x的增大越来越接近于3.
则推测正确的是( )
(1)当x>0时,y的值随着x的增大越来越小;
(2)y的值有可能等于3;
(3)当x>0时,y的值随着x的增大越来越接近于3.
则推测正确的是( )
| A. | (1)(2) | B. | (1)(3) | C. | (2)(3) | D. | (1)(2)(3) |