题目内容

5.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=$\sqrt{6}$,BC=3-$\sqrt{3}$,CD=6,则AD边的长为(  )
A.$6\sqrt{3}$B.$3\sqrt{3}$C.$4\sqrt{2}$D.$4\sqrt{3}$

分析 过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F,根据∠B=135°,∠C=120°,可构成等腰直角三角形,和角是30°的直角三角形,根据其性质,可求出线段AG,DG长,根据勾股定理可求出AD的长.

解答 解:如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.
∵∠B=135°,
∴∠ABE=45°,
∴BE=AE=$\frac{\sqrt{2}}{2}$×$\sqrt{6}$=$\sqrt{3}$,
∵∠C=120°,
∴∠DCF=60°,
∵CD=6,
∴CF=6cos60°=6×$\frac{1}{2}$=3,
∴DF=6sin60°=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
∴EF=$\sqrt{3}$+(3-$\sqrt{3}$)+3=6.
过点A作AG⊥DF,垂足为G.在Rt△ADG中,AG=EF=6,DG=DF-AE=3$\sqrt{3}$-$\sqrt{3}$=2$\sqrt{3}$.
根据勾股定理得AD=$\sqrt{A{G}^{2}+D{G}^{2}}$=$\sqrt{{6}^{2}+(2\sqrt{3})^{2}}$=4$\sqrt{3}$.
故选D.

点评 本题考查了勾股定理的应用,和等腰直角三角形的性质和30°直角三角形的特点,从而可求出解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网