题目内容

20.阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离.
例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或-2,即该方程的解为x=2或x=-2
例2:解不等式|x-1|>2,如图1,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1和3,则|x-1|>2的解集为x<-1或x>3.
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.

参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为x=1或x=-7.
(2)不等式|x-3|+|x+4|≥9的解集为x≥4或x≤-5.

分析 (1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;
(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数.

解答 解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.
故解是x=1或x=-7;
(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.
在数轴上,即可求得:x≥4或x≤-5.
故答案为:(1)x=1或x=-7;(2)x≥4或x≤-5.

点评 本题主要考查了绝对值的意义,就是表示距离,正确理解题中叙述的题目的意义是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网