题目内容

11.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.
(1)求斜坡AB的水平宽度BC;
(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.($\sqrt{5}$≈2.236,结果精确到0.1m)

分析 (1)根据坡度定义直接解答即可;
(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据$\frac{GH}{GD}$=$\frac{1}{2}$,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.

解答 解:(1)∵坡度为i=1:2,AC=4m,
∴BC=4×2=8m.
(2)作DS⊥BC,垂足为S,且与AB相交于H.
∵∠DGH=∠BSH,∠DHG=∠BHS,
∴∠GDH=∠SBH,
∴$\frac{GH}{GD}$=$\frac{1}{2}$,
∵DG=EF=2m,
∴GH=1m,
∴DH=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$m,BH=BF+FH=3.5+(2.5-1)=5m,
设HS=xm,则BS=2xm,
∴x2+(2x)2=52
∴x=$\sqrt{5}$m,
∴DS=$\sqrt{5}$+$\sqrt{5}$=2$\sqrt{5}$m≈4.5m.

点评 本题考查了解直角三角形的应用--坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网