ÌâÄ¿ÄÚÈÝ
10£®¶¨Ò壺yÊÇÒ»¸ö¹ØÓÚxµÄº¯Êý£¬Èô¶ÔÓÚÿ¸öʵÊýx£¬º¯ÊýyµÄֵΪÈýÊýx+2£¬2x+1£¬-5x+20ÖеÄ×îСֵ£¬Ôòº¯Êýy½Ð×öÕâÈýÊýµÄ×îСֵº¯Êý£®£¨1£©»³öÕâ¸ö×îСֵº¯ÊýµÄͼÏ󣬲¢ÅжϵãA£¨1£¬3£©ÊÇ·ñΪÕâ¸ö×îСֵº¯ÊýͼÏóÉϵĵ㣻
£¨2£©ÉèÕâ¸ö×îСֵº¯ÊýͼÏóµÄ×î¸ßµãΪB£¬µãA£¨1£¬3£©£¬¶¯µãM£¨m£¬m£©
¢ÙÖ±½Óд³ö¡÷ABMµÄÃæ»ý£¬ÆäÃæ»ýÊÇ2£»
¢ÚÈôÒÔMΪԲÐĵÄÔ²¾¹ýA£¬BÁ½µã£¬Ð´³öµãMµÄ×ø±ê£»
¢ÛÒÔ¢ÚÖеĵãMΪԲÐÄ£¬ÒÔ$\sqrt{2}$Ϊ°ë¾¶×÷Ô²£¬ÔÚ´ËÔ²ÉÏÕÒÒ»µãP£¬Ê¹PA+$\frac{\sqrt{2}}{2}$PBµÄÖµ×îС£¬Ö±½Óд³ö´Ë×îСֵ£®
·ÖÎö £¨1£©¸ù¾ÝÈýÊýµÄ×îСֵº¯ÊýµÄ¶¨Ò廳öͼÏó¼´¿É£¬¸ù¾ÝͼÏó¿ÉÒÔÅжϵãAµÄλÖã®
£¨2£©¢ÙÈçͼ2ÖУ¬×÷ON¡ÍABÓÚN£¬ÓÉAB¡ÎOM£¬µÃS¡÷ABM=S¡÷ABOÓɴ˼´¿ÉÅжϣ®
¢ÚÇó³öÏß¶ÎABµÄÖд¹Ïߣ¬ÔÙÁгö·½³Ì×é¼´¿É½â¾öÎÊÌ⣮
¢ÛÈçͼ3ÖУ¬È¡BMµÄÖеãD£¬Á¬½ÓPD¡¢PM£®ÓÉPM2=2=1¡Á2=MD•BM£¬ÍƳö¡÷PMD¡×¡÷BMP£¬ÍƳö$\frac{PD}{PB}$=$\frac{MD}{PM}$=$\frac{\sqrt{2}}{2}$£¬
ÍÆ³öPD=$\frac{\sqrt{2}}{2}$PB£¬ÍƳöPA+$\frac{\sqrt{2}}{2}$PB=PA+PD¡ÝAD£¬ÍƳö¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©×îСֵº¯ÊýµÄͼÏó¼ûͼÖÐʵÏߣ¬![]()
¡ßx=1ʱ£¬y=3£¬
¡àµãA£¨1£¬3£©ÔÚÕâ¸ö×îСֵº¯ÊýµÄͼÏóÉÏ£®
£¨2£©¢ÙÈçͼ2ÖУ¬×÷ON¡ÍABÓÚN£®![]()
¡ßAB¡ÎOM£¬
¡àS¡÷ABM=S¡÷ABO£¬
¡ßA£¨1£¬3£©£¬B£¨3£¬5£©£¬ON=$\sqrt{2}$£¬AB=2$\sqrt{2}$
¡àS¡÷ABM=$\frac{1}{2}$¡Á$2\sqrt{2}$¡Á$\sqrt{2}$=2£®
¹Ê´ð°¸Îª2£®
¢Ú¡ßÖ±ÏßABµÄ½âÎöʽΪy=x+2£¬
¡àÏß¶ÎABµÄÖд¹ÏߵĽâÎöʽΪy=-x+6£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+6}\\{y=x}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$£¬
¡àµãM×ø±êΪ£¨3£¬3£©£®
¢ÛÈçͼ3ÖУ¬È¡BMµÄÖеãD£¬Á¬½ÓPD¡¢PM£®![]()
¡ßPM2=2=1¡Á2=MD•BM£¬
¡ß¡ÏPMD=¡ÏBMP£¬
¡à¡÷PMD¡×¡÷BMP£¬
¡à$\frac{PD}{PB}$=$\frac{MD}{PM}$=$\frac{\sqrt{2}}{2}$£¬
¡àPD=$\frac{\sqrt{2}}{2}$PB£¬
¡àPA+$\frac{\sqrt{2}}{2}$PB=PA+PD¡ÝAD£¬
¡ßAD=$\sqrt{A{C}^{2}+C{D}^{2}}$=5£¬
¡àPA+$\frac{\sqrt{2}}{2}$PB¡Ý5£¬
¡àPA+$\frac{\sqrt{2}}{2}$PBµÄ×îСֵΪ5£®
µãÆÀ ±¾Ì⿼²éÔ²µÄ×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Æ½ÐÐÏßµÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ÕýÈ·×÷³öͼÐΣ¬Ñ§»áת»¯µÄ˼Ï룬ÌåÏÖÁËÊýÐνáºÏµÄ˼Ï룬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | 24Ôª | B£® | 26Ôª | C£® | 28Ôª | D£® | 30Ôª |
| A£® | -5 | B£® | 1 | C£® | -1 | D£® | -6 |
| A£® | 2£¨x2-y2£© | B£® | 2£¨x+y£©£¨x-y£© | C£® | 2£¨x+y£©2 | D£® | 2£¨x-y£©2 |
| A£® | $\frac{1}{3}$ | B£® | $\frac{2\sqrt{2}}{3}$ | C£® | $\frac{2}{3}$ | D£® | 1 |
| A£® | x2+x3=2x5 | B£® | m8¡Âm2=m4 | C£® | £¨m-n£©2=m2-n2 | D£® | £¨x2£©3=x6 |