题目内容
15.解方程组:$\left\{{\begin{array}{l}{{x^2}-{y^2}=1}\\{{x^2}-3xy-4{y^2}=0}\end{array}}\right.$.分析 先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.
解答 解:由②得 x-4y=0或x+3y=0,
原方程组可化为(Ⅰ)$\left\{\begin{array}{l}{x^2}-{y^2}=1\\ x-4y=0\end{array}\right.$(Ⅱ)$\left\{\begin{array}{l}{x^2}-{y^2}=1\\ x+y=0\end{array}\right.$,
解方程组(Ⅰ)得$\left\{\begin{array}{l}{x_1}=\frac{{4\sqrt{15}}}{15}\\{y_1}=\frac{{\sqrt{15}}}{15}\end{array}\right.\left\{\begin{array}{l}{x_2}=-\frac{{4\sqrt{15}}}{15}\\{y_2}=-\frac{{\sqrt{15}}}{15}\end{array}\right.$,
方程组(Ⅱ)无解,
所以原方程组的解是$\left\{\begin{array}{l}{x_1}=\frac{{4\sqrt{15}}}{15}\\{y_1}=\frac{{\sqrt{15}}}{15}\end{array}\right.\left\{\begin{array}{l}{x_2}=-\frac{{4\sqrt{15}}}{15}\\{y_2}=-\frac{{\sqrt{15}}}{15}\end{array}\right.$.
点评 本题考查了高次方程的解法,解方程组的思想是把二元二次方程组转化为二元一次方程组.
练习册系列答案
相关题目
6.解方程$\frac{x-2}{x}$-$\frac{3x}{x-2}$=2时,如果设$\frac{x}{x-2}$=y,则原方程可化为关于y的整式方程是( )
| A. | 3y2+2y+1=0 | B. | 3y2+2y-1=0 | C. | 3y2+y+2=0 | D. | 3y2+y-2=0 |
3.已知α为锐角,且sin(α-10°)=$\frac{\sqrt{2}}{2}$,则α等于( )
| A. | 45° | B. | 55° | C. | 60° | D. | 65° |
7.若关于x,y的二元一次方程组$\left\{\begin{array}{l}{ax-y=4}\\{x-3y=3}\end{array}\right.$无解,则a的值为( )
| A. | $\frac{1}{3}$ | B. | 1 | C. | -1 | D. | 3 |
4.用数轴表示不等式x<2的解集正确的是( )
| A. | B. | ||||
| C. | D. |