题目内容

15.解方程组:$\left\{{\begin{array}{l}{{x^2}-{y^2}=1}\\{{x^2}-3xy-4{y^2}=0}\end{array}}\right.$.

分析 先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.

解答 解:由②得 x-4y=0或x+3y=0,
原方程组可化为(Ⅰ)$\left\{\begin{array}{l}{x^2}-{y^2}=1\\ x-4y=0\end{array}\right.$(Ⅱ)$\left\{\begin{array}{l}{x^2}-{y^2}=1\\ x+y=0\end{array}\right.$,
解方程组(Ⅰ)得$\left\{\begin{array}{l}{x_1}=\frac{{4\sqrt{15}}}{15}\\{y_1}=\frac{{\sqrt{15}}}{15}\end{array}\right.\left\{\begin{array}{l}{x_2}=-\frac{{4\sqrt{15}}}{15}\\{y_2}=-\frac{{\sqrt{15}}}{15}\end{array}\right.$,
方程组(Ⅱ)无解,
所以原方程组的解是$\left\{\begin{array}{l}{x_1}=\frac{{4\sqrt{15}}}{15}\\{y_1}=\frac{{\sqrt{15}}}{15}\end{array}\right.\left\{\begin{array}{l}{x_2}=-\frac{{4\sqrt{15}}}{15}\\{y_2}=-\frac{{\sqrt{15}}}{15}\end{array}\right.$.

点评 本题考查了高次方程的解法,解方程组的思想是把二元二次方程组转化为二元一次方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网