题目内容
考点:勾股定理的逆定理,方向角
专题:应用题
分析:首先根据勾股定理逆定理得出∠ABC=90°,然后再判断AD∥NM,可得∠NBA=∠BAD=30°,再根据平角定义可得∠MBC=180°-90°-30°=60°,进而得到答案.
解答:
解:∵AB=60,BC=80,AC=100,
∴AB2+BC2=AC2,
∴∠ABC=90°,
∴AD∥NM,
∴∠NBA=∠BAD=30°,
∴∠MBC=180°-90°-30°=60°,
∴小明在河边B处取水后是沿南偏东60°方向行走的.
∴AB2+BC2=AC2,
∴∠ABC=90°,
∴AD∥NM,
∴∠NBA=∠BAD=30°,
∴∠MBC=180°-90°-30°=60°,
∴小明在河边B处取水后是沿南偏东60°方向行走的.
点评:此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
练习册系列答案
相关题目