题目内容

如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.

(1)这条抛物线的对称轴是   ,直线PQ与x轴所夹锐角的度数是   

(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;

(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.

(1)2,45°;(2)﹣1或2;(3)①6;②18. 【解析】试题分析:(1)把解析式转化成顶点式,或利用对称轴公式即可得该抛物线的对称轴,利用直线y=x+m与坐标轴的交点坐标即可求得直线PQ与x轴所夹锐角的度数;(2)分情况讨论,即直线PQ与x轴的交点落在OA的延长线上,OA上,AO的延长线上三种情况讨论m值.设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,,当点...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网