题目内容

16.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是(  )
A.60°B.80°C.100°D.120°

分析 由QR∥OB,∠AOB=40°,根据两直线平行,同位角相等,即可求得∠AQR的度数,又由∠AOB的两边OA,OB都为平面反光镜,根据平行线的性质,可得∠OQP=∠AQR=40°,然后又三角形外角的性质,求得∠QPB的度数.

解答 解:∵QR∥OB,∠AOB=40°,
∴∠AQR=∠AOB=40°,
∵OP=QP,
∴∠PQO=∠AOB=40°,
∵∠AQR+∠PQO+∠PQR=180°,
∴∠PQR=180°-2∠AQR=100°.
故选C

点评 此题考查了平行线的性质、三角形外角的性质以及反射的性质.此题难度不大,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网