题目内容

2.如图,在?ABCD中,∠BAD、∠ADC的平分线AE、DF分别交BC于点E、F,AE与DF相交于点G.
(1)求证:∠AGD=90°.
(2)若CD=4cm,求BE的长.

分析 (1)由平行四边形的性质和角平分线即可得出结论;
(2)利用平行四边形的性质结合角平分线的性质得出∠BAE=∠BEA,∠CFD=∠CDF,进而求出AB=BE=CD=4cm即可.

解答 (1)证明:∵四边形ABCCD是平行四边形,
∴∠BAD+∠ADC=180°,
∵AE、DF分别是∠BAD、∠ADC的平分线,
∴∠DAG=$\frac{1}{2}$∠BAD,∠ADG=$\frac{1}{2}$∠ADC,
∴∠DAG+∠ADG=$\frac{1}{2}$×(∠BAD+∠ADC)=$\frac{1}{2}$×180°=90°
∴∠AGD=90°;
(2)解:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∵CD=4cm,
∴BE=4cm,

点评 此题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,得出AB=BE是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网