题目内容
7.分析 过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=$\sqrt{13}$,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-2.在Rt△MHQ中运用勾股定理就可解决问题;
解答 过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP=$\sqrt{A{B}^{2}+P{B}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
∴BH=$\sqrt{B{Q}^{2}-Q{H}^{2}}$=2.
∵四边形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.![]()
由折叠可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
设QM=x,则有MB=x,MH=x-2.
在Rt△MHQ中,
根据勾股定理可得x2=(x-2)2+32,
解得x=$\frac{13}{4}$.
∴QM的长为$\frac{13}{4}$;
故答案为:$\frac{13}{4}$.
点评 本题主要考查了正方形的性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.
练习册系列答案
相关题目
17.如图,在?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将△ABC沿直线AC翻折180°后与原图形在同一平面内,若点B的落点记为B′,则DB′的长为( )

| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{2}$ | D. | $\sqrt{5}$ |