题目内容
3.分析 设∠A=x,则∠2=∠A+∠B=x+25°,由三角形内角和定理得出∠1+x=120°,再由已知条件得出x=90°即可.
解答 解:设∠A=x,则∠2=∠A+∠B=x+25°,
在△CEF中,∠1+∠2+∠C=180°,
∴∠1+∠2+35°=180°,
∴∠1+x+25°=145°,
∴∠1+x=120°①,
又∵x-∠1=60°②,
∴①+②得:2x=180°,
∴x=90°,
即∠A=90°.
点评 本题考查了三角形内角和定理、三角形的外角性质;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.
练习册系列答案
相关题目
14.(-$\frac{2}{3}$)2015×($\frac{3}{2}$)2014等于( )
| A. | 1 | B. | -$\frac{2}{3}$ | C. | -1 | D. | $\frac{2}{3}$ |