题目内容
15.方程组$\left\{\begin{array}{l}{\frac{4}{x}+\frac{1}{y}=9}\\{\frac{6}{x}-\frac{2}{y}=3}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$.分析 方程组整理后,利用加减消元法求出解即可.
解答 解:设$\frac{1}{x}$=a,$\frac{1}{y}$=b,方程组课化为得:$\left\{\begin{array}{l}{4a+b=9①}\\{6a-2b=3②}\end{array}\right.$,
①×2+②得:14a=21,即a=$\frac{3}{2}$,
把a=$\frac{3}{2}$代入①得:b=3,
∴$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$,
经检验$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$是原方程组的解.
故答案为:$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目