题目内容
商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖有 .(只填序号 )
考点:平面镶嵌(密铺)
专题:
分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
解答:
解:①长方形的每个内角是90°,4个能组成镶嵌;
②正方形的每个内角是90°,4个能组成镶嵌;
③正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌;
④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;
故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.
故答案为①②④.
②正方形的每个内角是90°,4个能组成镶嵌;
③正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌;
④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;
故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.
故答案为①②④.
点评:此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.
练习册系列答案
相关题目
如果函数y=(k-3)xk2-3k+2+kx+1是关于x的二次函数,那么k的值是( )
| A、1或2 | B、0或3 | C、3 | D、0 |