题目内容

6.如图,在△ABC中,∠A=90°,AC=8,AB=6,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥AB于点E,DF⊥AC于点F,则EF的最小值等于(  )
A.$\frac{1}{4}$B.$\frac{24}{5}$C.5D.$\frac{11}{2}$

分析 连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.

解答 解:如图,连接CD.
∵∠ACB=90°,AC=6,BC=8,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
∵PE⊥AC,PF⊥BC,∠C=90°,
∴四边形CFDE是矩形,
∴EF=CD,
由垂线段最短可得CD⊥AB时,线段EF的值最小,
此时,S△ABC=$\frac{1}{2}$BC•AC=$\frac{1}{2}$AB•CD,
即$\frac{1}{2}$×8×6=$\frac{1}{2}$×10•CD,
解得CD=4.8,
∴EF=4.8.
故选B.

点评 本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网