题目内容

17.如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当P为OE的中点,且OC=2时,求图中阴影部分的面积.

分析 (1)首先连接OD,ED=EP,易证得∠APD=∠ADP,又由⊙O的半径OC与直径AB垂直,可证得OD⊥ED,即可判定ED是⊙O的切线;
(2)由S阴影=S△ODE-S扇形,即可求得答案.

解答 (1)证明:连接OD,
∵OD是圆的半径,
∴OD=OC.
∴∠CDO=∠DCO.
∵OC⊥AB,
∴∠COP=90°,
∵在Rt△OPC中,∠CPO+∠PCO=90°,
∵ED=EP,
∴∠EDP=∠EPD=∠CPO,
∴∠EDO=∠EDP+∠CDO=∠CPO+∠DCO=90°.
∴ED⊥OD,
即ED是圆的切线;

(2)解:∵P为OE的中点,ED=EP,且由(1)知△ODE为Rt△,
∴PE=PD=ED,
∴∠E=60°,
∵OD=OC=2,
∴ED=$\frac{OD}{tan60°}$=$\frac{2\sqrt{3}}{3}$,
∴S阴影=S△ODE-S扇形=$\frac{1}{2}$×2×$\frac{2\sqrt{3}}{3}$-$\frac{30π×{2}^{2}}{360}$=$\frac{2\sqrt{3}-π}{3}$.

点评 此题考查了切线的判定以及扇形面积的求解.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网