题目内容

17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是1.5.

分析 连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.

解答 解:连接DF,如图所示:
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵AD=AC=3,AF⊥CD,
∴CE=DE,BD=AB-AD=2,
∴CF=DF,
在△ADF和△ACF中,$\left\{\begin{array}{l}{AD=AC}&{\;}\\{DF=CF}&{\;}\\{AF=AF}&{\;}\end{array}\right.$,
∴△ADF≌△ACF(SSS),
∴∠ADF=∠ACF=90°,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2
即x2+22=(4-x)2
解得:x=1.5;
∴CF=1.5;
故答案为:1.5.

点评 本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网