题目内容
已知
+
=
,
+
=
,
+
=
,则
+
+
的值为( )
| 1 |
| x |
| 1 |
| y+z |
| 1 |
| 2 |
| 1 |
| y |
| 1 |
| z+x |
| 1 |
| 3 |
| 1 |
| z |
| 1 |
| x+y |
| 1 |
| 4 |
| 2 |
| x |
| 3 |
| y |
| 4 |
| z |
| A、1 | ||
B、
| ||
| C、2 | ||
D、
|
考点:分式的混合运算
专题:计算题
分析:先整理求得
=
,从而得出
=
,
=3,
=
,即z=3y=5x,从而得出答案.
| xy+yz+zx |
| x+y+z |
| 9 |
| 2 |
| y |
| x |
| 5 |
| 3 |
| z |
| y |
| y |
| x |
| 5 |
| 3 |
解答:解:由已知等式得
=2,
=3,
=4,
所以
=
.
于是
=
,
=
,
=
,
所以
=
,
=3,
=
,
即z=3y=5x.
代入
+
=
,得
+
=
,
解得x=
.
所以
+
+
=
+
+
=
=2.
故选C.
| xy+zx |
| x+y+z |
| yz+xy |
| x+y+z |
| zx+yz |
| x+y+z |
所以
| xy+yz+zx |
| x+y+z |
| 9 |
| 2 |
于是
| yz |
| x+y+z |
| 5 |
| 2 |
| zx |
| x+y+z |
| 3 |
| 2 |
| xy |
| x+y+z |
| 1 |
| 2 |
所以
| y |
| x |
| 5 |
| 3 |
| z |
| y |
| y |
| x |
| 5 |
| 3 |
即z=3y=5x.
代入
| 1 |
| x |
| 1 |
| y+z |
| 1 |
| 2 |
| 1 |
| x |
| 1 | ||
|
| 1 |
| 2 |
解得x=
| 23 |
| 10 |
所以
| 2 |
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
| x |
| 3 | ||
|
| 4 |
| 5x |
| 23 |
| 5x |
故选C.
点评:本题考查了分式的混合运算,是一道较复杂的题目,比较麻烦.
练习册系列答案
相关题目
| A、130° | B、150° |
| C、135° | D、90° |