题目内容

20.若实数x,y满足|x-4|+$\sqrt{y-8}$=0,则以x,y的值为两边长的等腰三角形的周长是(  )
A.12B.16C.16或20D.20

分析 根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.

解答 解:根据题意得
x-4=0,解得x=4,
y-8=0,解得y=8,
(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;
(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.
故选:D.

点评 本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网