题目内容
12.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;
(2)分别求该公司3月,4月的利润;
(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额-经销成本)
分析 (1)设p=ky+b,(100,60),(200,110)代入即可解决问题.
(2)根据利润=销售额-经销成本,即可解决问题.
(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.
解答 解:(1)设p=ky+b,(100,60),(200,110)代入得$\left\{\begin{array}{l}{100k+b=60}\\{200k+b=110}\end{array}\right.$解得$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=10}\end{array}\right.$,
∴p=$\frac{1}{2}$y+10.
(2)∵y=150时,p=85,∴三月份利润为150-85=65万元.
∵y=175时,p=97.5,∴四月份的利润为175-97.5=77.5万元.
(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元
∵5月份以后的每月利润为90万元(y=200,求得p=110,200-110=90),
∴65+77.5+90(x-2)-40x≥200,
∴x≥4.75,
∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.
点评 本题考查一次函数的应用、待定系数法、不等式等知识,解题的关键是构建一次函数解决问题,搞清楚利润=销售额-经销成本,属于中考常考题型.
练习册系列答案
相关题目
3.
如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{8\sqrt{13}}{13}$ | D. | $\frac{12\sqrt{13}}{13}$ |