题目内容
11.| A. | 同位角相等,两直线平行 | |
| B. | 内错角相等,两直线平行 | |
| C. | 同旁内角互补,两直线品行 | |
| D. | 过直线外一点有且只有一条直线与这条直线平行 |
分析 过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.
解答 解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.
故选A.
点评 本题考查的是作图-复杂作图,熟知过直线外一点,作已知直线的平行线的方法是解答此题的关键.
练习册系列答案
相关题目
1.以下是关于正多边形的描述:
①正多边形的每条边都相等; ②正多边形都是轴对称图形;
③正多边形的外角和是360°;④正多边形都是中心对称图形.
其中正确的描述是( )
①正多边形的每条边都相等; ②正多边形都是轴对称图形;
③正多边形的外角和是360°;④正多边形都是中心对称图形.
其中正确的描述是( )
| A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①②③④ |
6.下列计算结果正确的是( )
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 2$\sqrt{3}$-$\sqrt{3}$=2 | C. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | D. | $\frac{\sqrt{2}}{\sqrt{5}}$=5$\sqrt{10}$ |
16.
如图,在矩形ABCD中,AB=5,AD=12,以BC为斜边在矩形外部作直角三角形BEC,F为CD的中点,则EF的最大值为( )
| A. | $\frac{\sqrt{433}}{2}$ | B. | $\frac{25}{4}$ | C. | $\frac{25}{2}$ | D. | $\frac{\sqrt{433}}{4}$ |
3.若a>b,则下列不等式中错误的是( )
| A. | 4-3a>4-3b | B. | $\frac{a}{2}$>$\frac{b}{2}$ | C. | 3a-4>3b-4 | D. | a+1>b+1 |