题目内容

如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.
(1)求证:直线PC是⊙O的切线;
(2)若AB=
10
,AD=2,求线段PC的长.
考点:切线的判定,勾股定理,平行四边形的性质,相似三角形的判定与性质
专题:
分析:(1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是
BC
的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;
(2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3-r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC的长.
解答:(1)证明:连接OC.
∵AD与⊙O相切于点A,
∴FA⊥AD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴FA⊥BC.
∵FA经过圆心O,
∴F是
BC
的中点,BE=CE,∠OEC=90°,
∴∠COF=2∠BAF.
∵∠PCB=2∠BAF,
∴∠PCB=∠COF.
∵∠OCE+∠COF=180°-∠OEC=90°,
∴∠OCE+∠PCB=90°.
∴OC⊥PC.
∵点C在⊙O上,
∴直线PC是⊙O的切线.

(2)解:∵四边形ABCD是平行四边形,
∴BC=AD=2.
∴BE=CE=1.
在Rt△ABE中,∠AEB=90°,AB=
10

AE=
AB2-BE2
=3

设⊙O的半径为r,则OC=OA=r,OE=3-r.
在Rt△OCE中,∠OEC=90°,
∴OC2=OE2+CE2
∴r2=(3-r)2+1.
解得r=
5
3

∵∠COE=∠PCE,∠OEC=∠CEP=90°.
∴△OCE∽△CPE,
OE
CE
=
OC
CP

3-
5
3
1
=
5
3
CP

CP=
5
4
点评:此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网