题目内容

3.解方程组:
$\left\{\begin{array}{l}{|x+y|=1}\\{|x|+2|y|=3}\end{array}\right.$.

分析 先去绝对值符号,再求出方程组的解即可.

解答 解:当x≥0,y≥0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{x+2y=3}\end{array}\right.$①或$\left\{\begin{array}{l}{x+y=-1}\\{x+2y=3}\end{array}\right.$②;
当x>0,y<0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{x-2y=3}\end{array}\right.$③或$\left\{\begin{array}{l}{x+y=-1}\\{x-2y=3}\end{array}\right.$④;
当x<0,y≥0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{-x+2y=3}\end{array}\right.$⑤或$\left\{\begin{array}{l}{x+y=-1}\\{-x+2y=3}\end{array}\right.$⑥;
当x<0,y<0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{-x-2y=3}\end{array}\right.$⑦或$\left\{\begin{array}{l}{x+y=-1}\\{-x-2y=3}\end{array}\right.$⑧.
解①得$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$(不合题意);解②$\left\{\begin{array}{l}{x=-5}\\{y=4}\end{array}\right.$(不合题意);解③得$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$;解④得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$;
解⑤得$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$;解⑥得$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$;解⑦得$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$(不合题意);解⑧得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$(不合题意).
故原方程组的解为:$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$.

点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网