题目内容
考点:旋转的性质,全等三角形的判定与性质,等边三角形的性质
专题:
分析:此类题要充分运用旋转的性质,以及全等三角形的性质得对应角相等,对应边相等,得出∠PAP′=60°,再利用等边三角形的判定得出△APP′为等边三角形,即可得出∠APP′的度数,即可得出答案.
解答:解:将△ABP绕顶点A旋转到△ACP′处,
∴△BAP≌△CAP′,
∴AB=AC,AP=AP′,∠BAP=∠CAP′,
∴∠BAC=∠PAP′=60°,
∴△APP′是等边三角形,
∴∠APP′=60°,
∴P′C=PB=4,PP′=PA=3,P′C=PC=5,
∴∠PP′C=90°,
∴△PP′C是直角三角形,
∴∠APB=∠AP′C=∠APP′+∠P′PC=60°+90°=150°,
∴∠BPA=150°;
故答案是:150°,△ABP;
∴△BAP≌△CAP′,
∴AB=AC,AP=AP′,∠BAP=∠CAP′,
∴∠BAC=∠PAP′=60°,
∴△APP′是等边三角形,
∴∠APP′=60°,
∴P′C=PB=4,PP′=PA=3,P′C=PC=5,
∴∠PP′C=90°,
∴△PP′C是直角三角形,
∴∠APB=∠AP′C=∠APP′+∠P′PC=60°+90°=150°,
∴∠BPA=150°;
故答案是:150°,△ABP;
点评:此题主要考查了旋转的性质,充分运用全等三角形的性质找到相关的角和线段之间的关系是解题关键.
练习册系列答案
相关题目