题目内容

如图,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=
 
.由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕点A旋转到△ACP′处,此时△ACP′≌
 
.这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
考点:旋转的性质,全等三角形的判定与性质,等边三角形的性质
专题:
分析:此类题要充分运用旋转的性质,以及全等三角形的性质得对应角相等,对应边相等,得出∠PAP′=60°,再利用等边三角形的判定得出△APP′为等边三角形,即可得出∠APP′的度数,即可得出答案.
解答:解:将△ABP绕顶点A旋转到△ACP′处,
∴△BAP≌△CAP′,
∴AB=AC,AP=AP′,∠BAP=∠CAP′,
∴∠BAC=∠PAP′=60°,
∴△APP′是等边三角形,
∴∠APP′=60°,
∴P′C=PB=4,PP′=PA=3,P′C=PC=5,
∴∠PP′C=90°,
∴△PP′C是直角三角形,
∴∠APB=∠AP′C=∠APP′+∠P′PC=60°+90°=150°,
∴∠BPA=150°;
故答案是:150°,△ABP;
点评:此题主要考查了旋转的性质,充分运用全等三角形的性质找到相关的角和线段之间的关系是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网