题目内容

12.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:AD=OC;
(2)求证:OE是CD的垂直平分线;
(3)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.

分析 (1)根据角平分线的性质和HL证明Rt△ODE≌Rt△OCE进行解答即可;
(2)△ODE≌△OCE,可得出OD=OC,DE=CE,利用垂直平分线的性质的逆定理,即可得出OE是CD的垂直平分线;
(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论

解答 证明:(1)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,
∴DE=CE,∠EOD=∠EOC,
在Rt△ODE与Rt△OCE中,
$\left\{\begin{array}{l}{DE=CE}\\{OE=OE}\end{array}\right.$,
∴Rt△ODE≌Rt△OCE,
∴OD=OC;
(2)∵Rt△ODE≌Rt△OCE,
∴OD=OC,ED=EC,
∴点O、点E在线段CD的垂直平分线上,
∴OE是CD的垂直平分线;
(3)OE=4EF.
∵OE是∠AOB的平分线,∠AOB=60°,
∴∠AOE=∠BOE=30°,
∵EC⊥OB,ED⊥OA,
∴OE=2DE,∠ODF=∠OED=60°,
∴∠EDF=30°,
∴DE=2EF,
∴OE=4EF.

点评 本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网