题目内容
18.分析 根据轴对称的性质可得PM=EM,PN=FN,然后求出△PMN的周长=EF.
解答 解:∵P点关于OA、OB的对称点分别为E、F,
∴PM=EM,PN=FN,
∴△PMN的周长=PM+MN+FN=ME+MN+FN=EF,
∵EF=15,
∴△PMN的周长=15.
点评 本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
练习册系列答案
相关题目
3.
如图坐标系,四边形ABCD是菱形,顶点A、B在x轴上,AB=5,点C在第一象限,且菱形ABCD的面积为20,A坐标为(-2,0),则顶点C的坐标为( )
| A. | (4,3) | B. | (5,4) | C. | (6,4) | D. | (7,3) |