题目内容

19.如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB=$\sqrt{3}$,∠EFA=60°,则四边形A′B′EF的周长是(  )
A.1+3$\sqrt{3}$B.3+$\sqrt{3}$C.4+$\sqrt{3}$D.5+$\sqrt{3}$

分析 先在直角三角形EFG中用勾股定理求出EF,FG,再判断出三角形A'EF是等边三角形,求出AF,从而得出BE=B'E=1,最后用四边形的周长公式即可.

解答 解:如图,

过点E作EG⊥AD,
∴∠AGE=∠FGE=90°
∵矩形纸片ABCD,
∴∠A=∠B=∠AGE=90°,
∴四边形ABEG是矩形,
∴BE=AG,EG=AB=$\sqrt{3}$,
在Rt△EFG中,∠EFG=60°,EG=$\sqrt{3}$,
∴FG=1,EF=2,
由折叠有,A'F=AF,A'B'=AB=$\sqrt{3}$,BE=B'E,∠A'FE=∠AFE=60°,
∵BC∥AD,
∴∠A'EF=∠AFE=60°,
∴△A'EF是等边三角形,
∴A'F=EF=2,
∴AF=A'F=2,
∴BE=AG=AF-FG=2-1=1
∴B'E=1
∴四边形A′B′EF的周长是A'B'+B'E+EF+A'F=$\sqrt{3}$+1+2+2=5+$\sqrt{3}$,
故选D.

点评 此题是折叠问题,主要考查了折叠的性质,锐角三角函数,等边三角形的判定和性质,四边形的周长公式,解本题的求出EF,FG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网