题目内容
在下列四个图形中,△DEF能由△ABC经过平移得到的图形是( )
| A、 |
| B、 |
| C、 |
| D、 |
考点:平移的性质
专题:
分析:根据图形平移的性质对各选项进行逐一分析即可.
解答:解:A、△DEF由△ABC位似变换而成,故本选项错误.
B、△DEF由△ABC平移而成,故本选项正确;
C、△DEF由△ABC对称而成,故本选项错误;
D、△DEF由△ABC旋转而成,故本选项错误;
故选B.
B、△DEF由△ABC平移而成,故本选项正确;
C、△DEF由△ABC对称而成,故本选项错误;
D、△DEF由△ABC旋转而成,故本选项错误;
故选B.
点评:本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.
练习册系列答案
相关题目
刘强在作业中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?刘强的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.其依据是( )

| A、同位角相等,两直线平行 |
| B、同旁内角互补,两直线平行 |
| C、内错角相等,两直线平行 |
| D、两直线平行,同位角相等 |
有一直角三角形的两边长分别为3和4,则第三边长是( )
| A、5 | ||
B、5或
| ||
C、
| ||
D、
|
化简
的结果是( )
| -a3b2c |
| ab |
| A、-a2b |
| B、-a2c |
| C、-a2bc |
| D、-bc |
| A、80° | B、60° |
| C、40° | D、20° |
如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线( )
| A、垂直 | B、相交 |
| C、平行 | D、不能确定 |