题目内容

15.如图,点C是AB的中点,AD=CE,CD=BE.
(1)求证:△ACD≌△CBE;
(2)连接DE,求证:四边形CBED是平行四边形.

分析 (1)由SSS证明△ADC≌△CEB即可;
(2)由全等三角形的性质得出得到∠ACD=∠CBE,证出CD∥BE,即可得出结论.

解答 (1)证明:∵点C是AB的中点,
∴AC=BC;在△ADC与△CEB中,$\left\{\begin{array}{l}{AD=CE}&{\;}\\{CD=BE}&{\;}\\{AC=BC}&{\;}\end{array}\right.$,
∴△ADC≌△CEB(SSS),
(2)证明:连接DE,如图所示:
∵△ADC≌△CEB,
∴∠ACD=∠CBE,
∴CD∥BE,
又∵CD=BE,
∴四边形CBED是平行四边形.

点评 该题主要考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网