题目内容
求证:AG⊥AF.
考点:全等三角形的判定与性质
专题:证明题
分析:根据垂直求出∠BEO=∠CDO=90°,根据三角形的内角和定理求出∠ABF=∠ACG,推出△ABF≌△GCA,根据全等三角形的性质得出∠G=∠BAF即可.
解答:证明:∵BD,CE是△ABC的高,
∴∠BEO=∠CDO=90°,
∵∠EOB=∠DOC,∠ABF+∠EOB+∠BEO=180°,∠ACG+∠CDO+∠DOC=180°,
∴∠ABF=∠ACG,
在△ABF和△GCA中,
,
∴△ABF≌△GCA,
∴∠G=∠BAF,
∵∠GEA=∠CEB=90°,
∴∠G+∠GAB=90°,
∴∠BAF+∠GAB=90°,
∴∠GAF=90°,
∴AG⊥AF.
∴∠BEO=∠CDO=90°,
∵∠EOB=∠DOC,∠ABF+∠EOB+∠BEO=180°,∠ACG+∠CDO+∠DOC=180°,
∴∠ABF=∠ACG,
在△ABF和△GCA中,
|
∴△ABF≌△GCA,
∴∠G=∠BAF,
∵∠GEA=∠CEB=90°,
∴∠G+∠GAB=90°,
∴∠BAF+∠GAB=90°,
∴∠GAF=90°,
∴AG⊥AF.
点评:本题考查了三角形的内角和定理和全等三角形的性质和判定的应用,解此题的关键是推出△ABF≌△GCA,注意:全等三角形的对应边相等,对应角相等.
练习册系列答案
相关题目
| A、35° | B、65° |
| C、55° | D、25° |
在线段AB上选取3种点,第1种是将AB线段10等分的点;第2种是将AB线段12等分的点;第3种是将AB线段15等分的点,这些点连同AB线段的端点可组成线段的条数是( )
| A、350 | B、595 |
| C、666 | D、406 |