题目内容

如图,已知:正方形ABCD,由顶点A引两条射线分别交BC、CD于E、F,且∠EAF=45°,求证:BE+DF=EF.
考点:全等三角形的判定与性质,正方形的性质
专题:证明题
分析:延长CD到G,使DG=BE,利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AG=AE,全等三角形对应角相等可得∠DAG=∠BAE,然后求出∠EAF=∠GAF,再利用“边角边”证明△AEF和△AGF全等,根据全等三角形对应边相等可得EF=GF,然后结合图形整理即可得证.
解答:证明:如图,延长CD到G,使DG=BE,
在正方形ABCD中,AB=AD,∠B=∠ADC=90°,
∴∠ADG=∠B,
在△ABE和△ADG中,
AB=AD
∠ADG=∠B
DG=BE

∴△ABE≌△ADG(SAS),
∴AG=AE,∠DAG=∠BAE,
∵∠EAF=45°,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=90°-45°=45°,
∴∠EAF=∠GAF,
在△AEF和△AGF中,
AG=AE
∠EAF=∠GAF
AF=AF

∴△AEF≌△AGF(SAS),
∴EF=GF,
∵GF=DG+DF=BE+DF,
∴BE+DF=EF.
点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记三角形全等的判定方法和正方形的性质并作辅助线构造成全等三角形是解题的关键,也是本题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网