题目内容

2.(1)如图1,AB∥CD,AB=CD,点E、F在AD上,且AE=DF,求证:∠B=∠C;
(2)如图2,从O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,若∠A=26°,求∠ACB的度数.

分析 (1)根据平行线的性质得出∠A=∠D,根据SAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;
(2)连接OB,根据切线的性质求出∠OBA,求出∠AOB,根据三角形外角性质和等腰三角形的性质求出即可.

解答 (1)证明:∵AB∥CD,
∴∠A=∠D,
在△ABE和△DCF中,
$\left\{\begin{array}{l}{AB=DC}\\{∠A=∠D}\\{AE=DF}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
∴∠B=∠C;

(2)解:连接OB,

∵AB切⊙O于B,
∴∠OBA=90°,
∵∠A=26°,
∴∠AOB=180°-90°-26°=64°,
∵OB=OC,
∴∠C=∠OBC,
∴∠AOB=∠C+∠DBC=2∠ACB,
∴∠ACB=32°.

点评 本题考查了全等三角形的性质和判定和切线的性质的应用,能综合运用定理进行推理是解此题的关键,注意:圆的切线垂直于过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网