题目内容

1.如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.

分析 连接BD,先根据勾股定理求出BD的长,再由勾股定理的逆定理判定△ABD为直角三角形,则四边形ABCD的面积=直角△BCD的面积+直角△ABD的面积.

解答 解:连接BD.如图所示:
∵∠C=90°,BC=15米,CD=20米,
∴BD=$\sqrt{B{C}^{2}+C{D}^{2}}$=$\sqrt{1{5}^{2}+2{0}^{2}}$=25(米);
在△ABD中,∵BD=25米,AB=24米,DA=7米,
242+72=252,即AB2+BD2=AD2
∴△ABD是直角三角形.
∴S四边形ABCD=S△ABD+S△BCD
=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BC•CD
=$\frac{1}{2}$×24×7+$\frac{1}{2}$×15×20
=84+150
=234(平方米);
即绿地ABCD的面积为234平方米.

点评 本题考查勾股定理及其逆定理的应用.解答此题的关键是作出辅助线,构造出直角三角形,求出BD的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网