题目内容

如图,已知线段a,c,∠α.

求作△ABC,使BC=a,AB=c,∠ABC=∠α.

见解析 【解析】【试题分析】利用“SAS”原理作图. 【试题解析】 (1)作∠MBN=∠α. (2)在射线BM上截取BA=c,在射线BN上截取BC=a. (3)连接AC,则△ABC即为所求作的三角形(如图).
练习册系列答案
相关题目

如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为_____.

【解析】试题分析:∵四边形ABCD为正方形,点O是对角线的交点, ∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°, ∵∠MON=90°, ∴∠MOB+∠BON=90°,∠BON+∠NOC=90°, ∴∠MOB=∠NOC. 在△MOB和△NOC中,有, ∴△MOB≌△NOC(ASA). 同理可得:△AOM≌△BON. ∴S阴影=S△BOC=...

若一个三角形的两边长分别为3和7,则第三边长可能是( )

A. 6 B. 3

C. 2 D. 11

A 【解析】试题解析:设第三条边长为x,根据三角形三边关系得: 7-3<x<7+3, 即4<x<10. 结合各选项数值可知,第三边长可能是6. 故选A.

不等式的解集在数轴上表示如图所示,则该不等式可能是___________________.

不唯一,如x-1≤0 【解析】由图形可知,不等式的解集为x≤1.只要所写的不等式的解集为x≤1,即可,答案不唯一.

用不等式表示图中的解集,其中正确的是( )

A. x≥-2 B. x>-2 C. x<-2 D. x≤-2

A 【解析】 试题分析:根据不等式的解集在数轴上表示出来的方法即可得到结果. 用不等式表示图中的解集为x≥-2,故选A.

根据下列已知条件,能唯一画出△ABC的是(  )

A. ∠A=36°,∠B=45°,AB=4 B. AB=4,BC=3,∠A=30°

C. AB=3,BC=4,CA=1 D. ∠C=90°,AB=6

A 【解析】A. ∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.故选A.

探究题:

(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;

(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;

(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有__________对,邻补角有__________对.

(1)1,3;(2)1,6;(3)1, ,n(n-1),2n(n-1) 【解析】(1)三条直线相交,最少有1个交点,最多有3个交点,如图: (2)四条直线相交,最少有1个交点,最多有6个交点,如图: (3)n条直线相交,最少有1个交点,最多有个交点,对顶角有对,邻补角有对. 故答案为:(1)1,3,(2)1,6,(3)1, , ,.

如图,直线AB和CD相交于点O,则∠AOC的对顶角是__________.

∠BOD 【解析】因为AB和CD交于点O,则∠AOC的对顶角是∠BOC,故答案为:∠BOC.

一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同.

(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的.你同意他的说法吗?为什么?

(2)搅匀后从中摸出一个球,请求出不是白球的概率;

(3)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应添加几个红球?

(1)不同意,理由见解析;(2);(3)3. 【解析】试题分析:(1)求出分别摸到白球与摸到红球的概率,比较这两个概率,即可知道谁的可能性大,概率大则可能性就大; (2)由(1)即可得出结论; (3)此题考查了借助方程思想求概率的问题,解题的关键是找到等量关系. 试题解析:【解析】 (1)不同意,因为两种球数量不同,装有2个白球和1个红球,摸出白球的概率为,摸出红球的概率...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网