题目内容
12.计算:$\sqrt{24}$+3$\sqrt{6}$-2$\sqrt{\frac{3}{2}}$.分析 先把各根式化为最简二次根式,再合并同类项即可.
解答 解:原式=2$\sqrt{6}$+3$\sqrt{6}$-$\sqrt{6}$
=4$\sqrt{6}$.
点评 本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
练习册系列答案
相关题目
2.
青岛市确定了“拥湾发展,环湾保护”的发展战略.某中学为了让学生了解环保知识,增强环保意识,举行了一次“保护胶州湾”的环保知识竞赛.共有2000名学生参加了这次竞赛,为了解本次竞赛的情况,从中抽取了部分同学的成绩作为样本进行统计.
频率分布表
请根据上表和图解答下列问题:
(1)填充频率分布表中的空格并补全频数分布直方图;
(2)样本中,竞赛成绩的中位数落在D组内 (从A、B、C、D、E中选择一个正确答案);
(3)若成绩在90分以上(不含90分)获得一等奖,成绩在80分至90分之间(不含80分,含90分)获得二等奖,除此之外没有其它奖项,则本次竞赛中此中学共有多少名学生获奖?
| 分组 | 频数 | 频率 |
| A组:50.5~60.5 | 16 | 0.08 |
| B组:60.5~70.5 | 0.16 | |
| C组:70.5~80.5 | 40 | 0.20 |
| D组:80.5~90.5 | 64 | 0.32 |
| E组:90.5~100 | 48 | |
| 合计 | 1 |
请根据上表和图解答下列问题:
(1)填充频率分布表中的空格并补全频数分布直方图;
(2)样本中,竞赛成绩的中位数落在D组内 (从A、B、C、D、E中选择一个正确答案);
(3)若成绩在90分以上(不含90分)获得一等奖,成绩在80分至90分之间(不含80分,含90分)获得二等奖,除此之外没有其它奖项,则本次竞赛中此中学共有多少名学生获奖?
20.已知函数y=2x-3的自变量x取值范围为1<x<5,则函数值的取值范围是( )
| A. | y<-2,y>2 | B. | y<-1,y>7 | C. | -2<y<2 | D. | -1<y<7 |