ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÈôÖ±Ïßy=mx+n¾¹ýB¡¢CÁ½µã£¬ÇóÖ±ÏßBCºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáx=-1ÉÏÕÒÒ»µãM£¬Ê¹µãMµ½µãAµÄ¾àÀëÓëµ½µãCµÄ¾àÀëÖ®ºÍ×îС£¬Çó³öµãMµÄ×ø±ê£»
£¨3£©ÉèµãPΪ¸ÃÅ×ÎïÏߵĶԳÆÖáx=-1ÉϵÄÒ»¸ö¶¯µã£¬Çóʹ¡÷BPCΪֱ½ÇÈý½ÇÐεĵãPµÄ×ø±ê£®£¨Ìáʾ£ºÈôÆ½ÃæÖ±½Ç×ø±êϵÄÚÁ½µãP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬ÔòÏß¶ÎPQµÄ³¤¶ÈPQ=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$£©£®
·ÖÎö £¨1£©¸ù¾ÝAºÍB¹ØÓÚx=-1¶Ô³Æ¼´¿ÉÇóµÃBµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÇóµÃBCÓë¶Ô³ÆÖáµÄ½»µã¾ÍÊÇM£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨-1£¬p£©£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ±íʾ³öBC¡¢BPºÍPCµÄ³¤£¬È»ºó·Ö³É¡÷BPCµÄÈý±ß·Ö±ðÊÇб±ßÈýÖÖÇé¿öÌÖÂÛ£¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇóµÃpµÄÖµ£¬µÃµ½PµÄ×ø±ê£®
½â´ð ½â£º£¨1£©A£¨1£¬0£©¹ØÓÚx=-1µÄ¶Ô³ÆµãÊÇ£¨-3£¬0£©£¬ÔòBµÄ×ø±êÊÇ£¨-3£¬0£©£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{-3m+n=0}\\{n=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=1}\\{n=3}\end{array}\right.$£¬
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=x+3£»
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{9a-3b+c=0}\\{a+b+c=0}\\{c=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$£®
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=-x2-2x+3£»![]()
£¨2£©ÔÚy=x+3ÖÐÁîx=-1£¬Ôòy=-1+3=2£¬
ÔòMµÄ×ø±êÊÇ£¨-1£¬2£©£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨-1£¬p£©£®
ÔòBP2=£¨-1+3£©2+p2=4+p2£®
PC=£¨0+1£©2+£¨3-p£©2=p2-6p+10£®
BC=32+32=18£®
µ±BCʱб±ßʱ£¬BP2+PC2=BC2£¬Ôò£¨4+p2£©+£¨p2-6p+10£©=18£¬
½âµÃ£ºp=-1»ò2£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬-1£©»ò£¨-1£¬2£©£»
µ±BPÊÇб±ßʱ£¬BP2=PC2+BC2£¬Ôò4+p2=£¨p2-6p+10£©+18£¬
½âµÃ£ºp=4£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬4£©£»
µ±PCÊÇб±ßʱ£¬PC2=BP2+BC2£¬Ôòp2-6p+10=4+p2+18£¬
½âµÃ£ºp=-2£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬-2£©£®
×ÜÖ®£¬PµÄ×ø±êÊÇ£¨-1£¬-1£©»ò£¨-1£¬2£©»ò£¨-1£¬4£©»ò£¨-1£¬-2£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÒÔ¼°¶Ô³ÆµÄÐÔÖʺ͹´¹É¶¨Àí£¬ÕýÈ·ÀûÓÃp±íʾ³ö¡÷BPCµÄ±ßBPºÍPCµÄ³¤Êǹؼü£®
| A£® | x+5 | B£® | x-5 | C£® | x2-25 | D£® | ·ÇÒÔÉÏ´ð°¸ |
| ÐÇÆÚ | Ò» | ¶þ | Èý | ËÄ | Îå |
| ÿ¹ÉÕǵø | +1 | +1.5 | -1.5 | -2.5 | +0.5 |
£¨2£©±¾ÖÜÄÚ×î¸ß¼ÛÊÇÿ¹É¶àÉÙÔª£¿×îµÍ¼ÛÊÇÿ¹É¶àÉÙÔª£¿
£¨3£©ÈôСÍõ°´±¾ÖÜÎåµÄÊÕÅ̼۽«¹ÉƱȫ²¿Âô³ö£¬ÄãÈÏΪËû»á»ñÀûÂð£¿