题目内容

20.如图,已知△ABC,按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.

分析 (1)利用SSS定理证得结论;
(2)设BE=x,利用特殊角的三角函数易得AE的长,由∠BCA=45°易得CE=BE=x,解得x,得CE的长.

解答 (1)证明:在△ABC与△ADC中,
$\left\{\begin{array}{l}{AB=AD}\\{BC=CD}\\{AC=AC}\end{array}\right.$,
∴△ABC≌△ADC(SSS);

(2)解:设BE=x,
∵∠BAC=30°,
∴∠ABE=60°,
∴AE=tan60°•x=$\sqrt{3}$x,
∵△ABC≌△ADC,
∴CB=CD,∠BCA=∠DCA,
∵∠BCA=45°,
∴∠BCA=∠DCA=45°,
∴∠CBD=∠CDB=45°,
∴CE=BE=x,
∴$\sqrt{3}$x+x=4,
∴x=2$\sqrt{3}$-2,
∴BE=2$\sqrt{3}$-2.

点评 本题主要考查了全等三角形的判定及性质,特殊角的三角函数,利用方程思想,综合运用全等三角形的性质和判定定理是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网