题目内容

12.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3=110°.

分析 设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.

解答 解:如图,∠BAC=180°-90°-∠1=90°-∠1,
∠ABC=180°-60°-∠3=120°-∠3,
∠ACB=180°-60°-∠2=120°-∠2,
在△ABC中,∠BAC+∠ABC+∠ACB=180°,
∴90°-∠1+120°-∠3+120°-∠2=180°,
∴∠1+∠2=150°-∠3,
∵∠1=40°,
∴∠2+∠3=150°-40°=110°.
故答案为:110°.

点评 本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网