题目内容

3.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于$\frac{1}{2}$MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1),则a和b的数量关系为(  )
A.6a-2b=1B.6a+2b=1C.6a-b=1D.6a+b=1

分析 根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号可得6a+2b-1=0,然后再整理可得答案.

解答 解:根据作图方法可得点P在第二象限角平分线上;点P到x轴、y轴的距离相等;点P的横纵坐标互为相反数,
则P点横纵坐标的和为0,
故6a+2b-1=0(或-6a=2b-1),
整理得:6a+2b=1,
故选B.

点评 此题主要考查了基本作图-角平分线的做法以及坐标与图形的性质:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网