题目内容

8.如图,直线AB与CD相交于点O,OE⊥AB,∠AOC:∠AOD=4:5,OF平分∠BOD,求∠EOF的度数.

分析 设∠AOC=4x,则∠AOD=5x,根据邻补角的定义得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,则∠AOC=4x=80°,利用对顶角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,则∠DOE=∠BOE-∠BOD=10°,再根据角平分线的定义得到∠DOF=$\frac{1}{2}$∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度数.

解答 解:设∠AOC=4x,则∠AOD=5x,
∵∠AOC+∠AOD=180°,
∴4x+5x=180°,解得x=20°,
∴∠AOC=4x=80°,
∴∠BOD=80°,
∵OE⊥AB,
∴∠BOE=90°,
∴∠DOE=∠BOE-∠BOD=10°,
又∵OF平分∠DOB,
∴∠DOF=$\frac{1}{2}$∠BOD=40°,
∴∠EOF=∠EOD+∠DOF=10°+40°=50°.

点评 本题考查了垂线的性质:两直线垂直,则它们相交所成的角为90°.也考查了对顶角相等以及邻补角的定义,以及方程思想的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网