ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Èç¹ûµãP£¬Q·Ö±ð´ÓA¡¢Cͬʱ³ö·¢£¬¾¹ý¼¸ÃëÖÓ£¬Ê¹S¡÷QPC=8cm2£¿
£¨2£©Èç¹ûµãP´ÓµãAÏȳö·¢2s£¬µãQÔÙ´ÓµãC³ö·¢£¬¾¹ý¼¸ÃëÖÓºóS¡÷QPC=4cm2£¿
£¨3£©Èç¹ûµãP¡¢Q·Ö±ð´ÓA¡¢Cͬʱ³ö·¢£¬¾¹ý¼¸ÃëÖÓºóPQ=BQ£¿
·ÖÎö ±¾Ìâ¿ÉÉèP³ö·¢xsºó£¬S¡÷QPC·ûºÏÒÑÖªÌõ¼þ£º
ÔÚ£¨1£©ÖУ¬AP=xm£¬PC=£¨6-x£©m£¬QC=2xm£»
ÔÚ£¨2£©ÖУ¬AP=xm£¬PC=£¨6-x£©m£¬QC=2£¨x-2£©m£¬½ø¶ø¿ÉÁгö·½³Ì£¬Çó³ö´ð°¸£»
ÔÚ£¨3£©ÖУ¬PC=£¨6-x£©m£¬QC=2xm£¬BQ=8-2x£¬ÀûÓù´¹É¶¨ÀíºÍPQ=BQÁгö·½³Ì£¬Çó³ö´ð°¸£®
½â´ð ½â£º£¨1£©P¡¢Qͬʱ³ö·¢£¬¾¹ýxÃëÖÓ£¬S¡÷QPC=8cm2£¬ÓÉÌâÒâµÃ£¬
$\frac{1}{2}$£¨6-x£©•2x=8£¬
¡àx2-6x+8=0£¬
½âµÃ£ºx1=2£¬x2=4£®
¾2ÃëµãPµ½ÀëAµã1¡Á2=2cm´¦£¬µãQÀëCµã2¡Á2=4cm´¦£¬¾4sµãPµ½ÀëAµã1¡Á4=4cm´¦£¬µãQµãCµã2¡Á4=8cm´¦£¬¾ÑéÖ¤£¬ËüÃǶ¼·ûºÏÒªÇó£®
´ð£ºP¡¢Qͬʱ³ö·¢£¬¾¹ý2s»ò4s£¬S¡÷QPC=8cm2£®
£¨2£©ÉèP³ö·¢tsʱS¡÷QPC=4cm2£¬ÔòQÔ˶¯µÄʱ¼äΪ£¨t-2£©Ã룬ÓÉÌâÒâµÃ£º
$\frac{1}{2}$£¨6-t£©•2£¨t-2£©=4£¬
¡àt2-8t+16=0£¬
½âµÃ£ºt1=t2=4
Òò´Ë¾4ÃëµãPÀëAµã1¡Á4=4cm£¬µãQÀëCµã2¡Á£¨4-2£©=4cm£¬·ûºÏÌâÒ⣮
´ð£ºPÏȳö·¢2s£¬QÔÙ´ÓC³ö·¢2sºó£¬S¡÷QPC=4cm2£®
£¨3£©Éè¾¹ýxÃëÖÓºóPQ=BQ£¬ÔòPC=£¨6-x£©m£¬QC=2xm£¬BQ=8-2x£¬
£¨6-x£©2+£¨2x£©2=£¨8-2x£©2£¬
½âµÃx1=-10+8$\sqrt{2}$£¬x2=-10-8$\sqrt{2}$£¨²»ºÏÌâÒ⣬ÉáÈ¥£©
´ð£º¾¹ý-10+8$\sqrt{2}$ÃëÖÓºóPQ=BQ£®
µãÆÀ ´ËÌ⿼²éÒ»Ôª¶þ´Î·½³ÌµÄʵ¼ÊÔËÓ㬽âÌâµÄ¹Ø¼üÊÇŪÇåͼÐÎÓëʵ¼ÊÎÊÌâµÄ¹ØÏµ£¬ÁíÍ⣬»¹Òª×¢Òâ½âµÄºÏÀíÐÔ£¬´Ó¶øÈ·¶¨È¡Éᣮ
| µã | A | B | C | D | E |
| ÓÐÀíÊý | -4 | -2 | 0.5 | ||
| Ïà·´Êý | 2 | -3 | |||
| ¾ø¶ÔÖµ | 4 | 3.5 |
| A£® | 2£¬3£¬$\sqrt{13}$ÊÇÒ»×é¹´¹ÉÊý | |
| B£® | ¹ÀËãµÃ$\sqrt{5}$$£¼\root{3}{7}$ | |
| C£® | ÎÞÀíÊýÊÇÎÞÏÞСÊý | |
| D£® | ÔÚº£ÃæÉÏÖªµÀÒ»¸ö·½Î»½Ç¾Í¿ÉÒÔÈ·¶¨Ò»¸öÄ¿±êµÄλÖà |
| A£® | ËùÓеÄÖ±½ÇÈý½ÇÐζ¼ÏàËÆ | B£® | ËùÓеĵÈÑüÈý½ÇÐζ¼ÏàËÆ | ||
| C£® | ËùÓеĵÈÑüÖ±½ÇÈý½ÇÐζ¼ÏàËÆ | D£® | ËùÓеľØÐζ¼ÏàËÆ |