题目内容
2.| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
分析 连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项①正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项⑤正确;由△AOD∽△BOC,可得$\frac{{S}_{△AOD}}{{S}_{△BOC}}$=${(\frac{AD}{OB})}^{2}$=${(\frac{AD}{AO})}^{2}$=$\frac{{AD}^{2}}{{AO}^{2}}$,选项③正确;由△ODE∽△OEC,可得$\frac{OD}{OC}=\frac{DE}{OE}$,选项④错误.
解答 解:连接OE,如图所示:![]()
∵AD与圆O相切,DC与圆O相切,BC与圆O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,选项②正确;
在Rt△ADO和Rt△EDO中,$\left\{\begin{array}{l}{OD=OD}\\{DA=DE}\end{array}\right.$,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项①正确;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴$\frac{OD}{CD}$=$\frac{DE}{OD}$,即OD2=DC•DE,选项⑤正确;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,
∠A=∠B=90°,
∴△AOD∽△BOC,
∴$\frac{{S}_{△AOD}}{{S}_{△BOC}}$=${(\frac{AD}{OB})}^{2}$=${(\frac{AD}{AO})}^{2}$=$\frac{{AD}^{2}}{{AO}^{2}}$,选项③正确;
同理△ODE∽△OEC,
∴$\frac{OD}{OC}=\frac{DE}{OE}$,选项④错误;
故选C.
点评 此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.
| A. | 四边形ABCD由矩形变为平行四边形 | B. | BD的长度增大 | ||
| C. | 四边形ABCD的面积不变 | D. | 四边形ABCD的周长不变 |
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:
| 类别 | 频数(人数) | 频率 |
| 小说 | 0.5 | |
| 戏剧 | 4 | |
| 散文 | 10 | 0.25 |
| 其他 | 6 | |
| 合计 | m | 1 |
(2)在扇形统计图中,“其他”类所占的百分比为15%;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.