题目内容

如图,已知抛物线轴于点、点,交轴于点C,且S△ABC=6.

(1)求两点的坐标;

(2)求△ABC的外接圆与抛物线的对称轴的交点坐标;

(3)点E为抛物线上的一动点(点异于,且在对称轴右侧),直线交对称轴于N,

直线BE交对称轴于,对称轴交轴于,试确定 的数量关系并说明理由.

(1) ;(2)和;(3)与的数量关系为(在轴下方)或(在 轴上方) 【解析】试题分析:(1)设, ,根据题意和已知条件可得, ,解得, ,即可得两点的坐标;(2))设外接圆心为, 交对称轴于,设对称轴交轴于,作对称轴于,可得,从而求得点D的坐标,根据勾股定理求得半径的长,即可得△ABC的外接圆与抛物线的对称轴的交点坐标;(3)分在轴下方和在轴上方两种情况求、 的数量关系. 试题解析:...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网