题目内容
3.解不等式组$\left\{\begin{array}{l}{2x-2<3x①}\\{\frac{x+2}{5}-\frac{x-1}{4}≥\frac{1}{2}②}\end{array}\right.$,并在数轴上把它的解集表示出来.分析 分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,即可得不等式组的解集.
解答 解:解不等式①,得:x>-2,
解不等式②,得:x≤3,
如图,在同一数轴上表示不等式①、②的解集:![]()
可知不等式组的解集是:-2<x≤3.
点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
练习册系列答案
相关题目
18.
如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=$\frac{1}{x}$(x>0)的图象上,则E点的坐标是( )
| A. | $({\frac{{\sqrt{5}-1}}{2},\frac{{\sqrt{5}+1}}{2}})$ | B. | $({\frac{{\sqrt{5}+1}}{2},\frac{{\sqrt{5}-1}}{2}})$ | C. | $({\frac{{\sqrt{5}}}{2},-\frac{{\sqrt{5}}}{2}})$ | D. | (1,1) |
12.
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
| A. | 2$\sqrt{3}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | 6 |
13.正比例函数y=-2x的大致图象是( )
| A. | B. | C. | D. |