题目内容
16.用加减法解方程组$\left\{\begin{array}{l}{2x+3y=3}\\{3x-2y=11}\end{array}\right.$时,下列四种变形中正确的是( )| A. | $\left\{\begin{array}{l}{4x+6y=3}\\{9x-6y=11}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{6x+3y=9}\\{6x-2y=22}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{4x+6y=6}\\{9x-6y=33}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{6x+9y=3}\\{6x-4y=11}\end{array}\right.$ |
分析 方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.
解答 解:用加减法解方程组$\left\{\begin{array}{l}{2x+3y=3}\\{3x-2y=11}\end{array}\right.$时,下列四种变形中正确的是$\left\{\begin{array}{l}{4x+6y=6}\\{9x-6y=33}\end{array}\right.$,
故选C
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
8.计算:23=( )
| A. | 5 | B. | 6 | C. | 8 | D. | 9 |
7.下列方程中是二元一次方程组的是( )
| A. | $\left\{\begin{array}{l}{3x-2y=1}\\{y=4z+1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=3}\\{2b-3a=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{\frac{1}{x}+y=3}\\{\frac{1}{y}+2x=4}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{mn=-1}\\{m+n=3}\end{array}\right.$ |
4.我县万德隆商场有A、B两种商品的进价和售价如表:
已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.
(1)求m的值;
(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.
①求y关于x的函数关系式;
②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.
| 商品 价格 | A | B |
| 进价(元/件) | m | m+20 |
| 售价(元/件) | 160 | 240 |
(1)求m的值;
(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.
①求y关于x的函数关系式;
②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.
11.利用代入消元法解方程组$\left\{\begin{array}{l}{2x+3y=6①}\\{5x-3y=2②}\end{array}\right.$,下列做法正确的是( )
| A. | 由①得x=$\frac{6+3y}{2}$ | B. | 由①得y=$\frac{6-2x}{3}$ | C. | 由②得y=$\frac{-2+3x}{5}$ | D. | 由②得y=$\frac{5x+2}{3}$ |
1.下列方程组用加减法求解比代入法较简便的一个是( )
| A. | $\left\{\begin{array}{l}{x=2y}\\{2x+3y=7}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-2y=6}\\{2x+y=12}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{x=6y+2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{-8x+3y=5}\\{8x+9y=1}\end{array}\right.$ |